Wednesday, October 15, 2008

Introducing Bernoulli Integral For Solving Some Physical Problems

Some of both modeling and problems in physics have been commonly presented in a first-order nonlinear differential equations (DE) of constant coefficients. Because the DE are integrable, therefore one must have an integral formulation for solving the physical problems. This paper introduces Bernoulli integral to complete the Tables of Integral for all of the Mathematical Handbooks.

Basically, the Bernoulli integral is integral form of the homogeneous Bernoulli differential equation (BDE) of constant coefficients. Under proper transformation, the Bernoulli integral can be used to generate another integral formulation especially for integrals that can be transformed into arctangent DE. By using the Bernoulli integral, one can create its self the integral formulation of solving the physical problems, and hence reduces utilization the tables of integral. A special application in generating Euler formula also presented.

Introduction

Some of both modeling and problems in physics have been commonly presented in a first-order nonlinear differential equations (DE) of constant coefficients For instance, in designing electromagnetic apparatus [Markus,1979], the logistic growth process [Welner,2004], chaotic behavior [Barger et al,1995], the generation and propagation of soliton [Wu et al 2005],[Morales,2005], the transport of fluxon [Gonzile et al,2006], the generation of squeezed laser [Friberg,1996 ],etc. One requires Table of Integral to solve a specific integral for solving such differential equation [Spiegel,MR,1968]. To complete the Table of integral, we introduce Bernoulli integral that until now not including in both of the Table integral and mathematical Handbook. By using the Bernoulli integral, one can create the integral formulation required in solving the physical problems, and hence reduces utilization the Tables of integral.

Key-words : Arctangent, tangent, arctangent differential equation, Bernoulli equation, Bernoulli differential equation, integral, Bernoulli integral, Schrödinger equation, modulation instability, Euler formula, Argand diagram, electromagnetic, logistic growth, chaotic, soliton, fluxon, squeezed laser

For Detail

Visit http://rohedi.com or
Download Here

MORE .....

Tuesday, September 23, 2008

Fighting of the Cause of Allah by Governing a Smart Mathematics Based on Islamic Teology

Existence of the universe is reality evidence of supremacy and science fame of God Allah SWT. Inking seven of times water in all ocean world (even more) not enough to write down it. According to writer, mathematical model which representatively as stepping in developing the Islamic Scientific is arctangent differential equation

Eqs.(1)


which its exact solution is of the form:

jihat_image2.gif


Eqs.(2)


Because of writer looks into this arctangent differential equation is having the religion character
(according to writer that for a=1, b=1, and both of initial values t0 = 0 dan y0 = 0 the value -.gif of the tangent function at fungsi_tan.gif correspond to the Qidam and Baqa properties), hence solution yielded a solver technique entering religion factors must still appropriate to the exact solution

This paper introduces a new technique of solving a nonlinear first order ordinary differential equation so-called as SMT (stands for Stable Modulation Technique) which its solution is in the form of AF(A), that is a formula of modulation function which its amplitude term is also including in the phase function. The transfromation function applied for solving eq.(1) by using SMT is jihat_image4.gif what gives its final solution in the form :

jihat_image3.gif



Eqs.(3)

The idea of developing this stable modulation technique based on the event of Isra' and Mi’raj of prophet Muhammad, which alongside its journey towards Sidhratulmuntaha guided by angel Jibril. Eqs.(3) assures writer that when mi’raj the energy of prophet Muhammad is transferred into the energy form of modulated wave. The fundamental aspect for developing of modern mathematics and computing is obtained when to = 0, yo = 0, a = 0 dan b = 0 where eq.(3) then reduces to the form :

Eqs .(4)

Eqs.(4) as a representative form of tangent function up to now has not been met in Mathematics Handbook, because the only

Eqs .(5)

But both of eq.(4) and eq.(5) are still giving the same value with the value of tan(t) for all values of t except at t = pi / 2 in eq.(4) and at t = pi in eq.(5) which both giving value of 0/0, though value of tan(pi/2) = ~. In mathematics the value of 0/0 is unknown as commonly called as NaN (stands for Not a Number). The value of ~ is still not obtaining from eq.(4) and eq.(5), even if has been performed the limit operation because it is only giving devide by zero:

Eqs .(6)

At presentation of the exact solution of arctangent differential equation brightens the confidence of writer that during journey Isra', angel Jibril telling the exact properties of God, while during journey Mi’raj of prophet Muhammad is supplied by a stabilization of believe that God doesn't spell out members as apparently at 0/0, and man will never can reach God will desire, as apparently at 1/0. The primary message is that mathematics applied as "approach" properly in the effort of explaining the Sunnatullah, and don't make mathematics as a justification tool.

Keywords : Jihad, Isra’ Mi’raj, Prophet Muhammad, Angel Jibril, mathematics, arctangent, arctangent differential equation, tangent function, NaN (0/0), devide by zero (1/0), sunnatullah

For Detail

Visit http://rohedi.com or
Download Here

MORE .....

Berjihad Di Jalan Allah Dengan Membangun Matematika Cerdas Berbasis Teologi Islam

Keberadaan alam semesta merupakan bukti nyata keagungan dan kemasyhuran ilmu Allah S.W.T. Tinta sebanyak tujuh kali air di seluruh lautan duniapun (bahkan lebih) tidaklah cukup untuk menuliskannya. Menurut penulis, model matematik yang representatif sebagai pijakan dalam mengembangkan Sains Islam adalah persamaan diferensial (PD) arctangent:jihat_image1.gif


pers (1)


yang solusi eksaknya berbentuk:

jihat_image2.gif


pers. (2)



Oleh karena penulis memandang PD arctangent ini merupakan persamaan diferensial yang bersifat religi (menurut penulis bahwa untuk a=1, b=1, serta nilai awal t0 = 0 dan y0 = 0 nilai -.gif fungsi tangent pada fungsi_tan.gifmensyiratkan sifat Qidam dan Baqa), maka solusi yang dihasilkan suatu teknik pemecah persamaan diferensial yang memasukkan faktor-faktor religipun semestinya tetap sesuai dengan solusi eksaknya.

Pada makalah ini diperkenalkan Teknik Modulasi Stabil (SMT=Stable Modulation Technique) sebuah teknik baru pemecah persamaan diferensial nonlinear berderajad satu yang solusinya berbentuk AF(A), yaitu suatu formula gelombang termodulasi yang suku amplitudonya juga terlingkup dalam fungsi fasanya. Fungsi transformasi untuk pemecahan Pers.(1) dengan SMT adalah jihat_image4.gif yang memberikan bentuk solusi akhir:

jihat_image3.gif


pers.(3)



Ide pengembangan teknik modulasi stabil ini didasarkan pada peristiwa Isra’ dan Mi’raj nabi Muhammad, yang di sepanjang perjalanannya menuju Sidhratulmuntaha dibimbing oleh malaikat Jibril. Pers.(3) meyakinkan penulis bahwa saat bermi’raj energi nabi Muhammad ditransfer ke dalam bentuk energi gelombang termodulasi. Hal fundamental bagi pengembangan matematika dan komputasi modern diperoleh ketika to = 0, yo = 0, a = 0 dan b = 0 Pers.(3) tereduksi ke dalam bentuk:

pers.(4)


Pers.(4) sebagai bentuk representatif dari fungsi tan(t) hingga kini belum dijumpai dalam Handbook Matematika manapun, karena yang ada hanyalah

pers.(5)


Namun kedua Pers.(4) dan Pers.(5) tepat

memberikan nilai yang sama dengan nilai fungsi tan(t) untuk semua nilai t kecuali di t = pi / 2 untuk Pers.(4) dan di t = pi untuk Pers.(5) yang keduanya memberi nilai 0/0, padahal nilai tan(pi/2) = tak hingga. Dalam matematika nilai tersebut tidak dikenal, karena itu lazim disebut NaN (Not a Number) alias bukan bilangan. Nilai tak hingga untuk tan(pi/2) tetap tidak diperoleh dari Pers.(4) dan Pers.(5) sekalipun telah dikenakan operasi limit, karena hanya memberikan nilai devide by zero:

pers.(6)


Paparan solusi eksak PD arctangent di atas mencerahkan keyakinan penulis bahwa selama perjalanan Isra’ malaikat Jibril mengumandangkan sifat haq (sifat exact) Allah, sedangkan selama perjalanan bermi’raj nabi Muhammad dibekali pemantapan iman bahwa Allah tidak berbilang yang terepresentasi pada 0/0, dan manusia tidak akan pernah dapat menjangkau kehendak Allah sebagaimana terepresentasi pada 1/0. Pesan utamanya adalah bahwa matematika seyogyanya digunakan sebagai “pendekatan” secara benar dalam upaya menerangkan Sunnatullah, dan jangan jadikan pula matematika sebagai alat penjustifikasi.

Kata Kunci : Jihad, Isra’ Mi’raj, Nabi Muhammad, Malaikat Jibril, matematika, arctangent, PD arctangent, fungsi tangent, NaN (0/0), devide by zero (1/0), Tuhan takberbilang, sunnatullah

For Detail :

Visit http://rohedi.com or
Download Here

MORE .....

Anti Einstein Technique : Analytic Solution of Nonlinear Schrödinger Equation by Means of A New Approach

The nonlinear Schrödinger equation (NSE) has served as the governing equation of optical soliton in the study of its applications to optical communication and optical switching. Various schemes have been employed for the solution of this nonlinear equation as well as its variants. We report in this paper a relatively simpler new approach for the analytic solution of NSE. In this scheme the equation was first transformed into an arctangent differential equation, which was then separated into the linear and nonlinear parts, with the linear part solved in a straight forward manner. The solution of the nonlinear equation was written in the form of modulation function characterized by its amplitude function A and phase function F(A). Substituting the linear solution for A, the arctangent differential equation was solved for a certain initial value of A. It is shown that this method is applicable to other first-order nonlinear differential equation such as the Korteweg de Vries equation (KdV), which can be transformed into an arctangent differential equation.

I. Introduction

The phenomenon of the solitary wave propagation was observed for the first time by the Scottish scientist John Scott Russell in 1844, when one day he was watching water waves of a certain shape kept on traveling without changing their shape for a distance as far as his eye could see. To explain the behavior of such unusual wave, Korteweg and de Vries governed a model for the wave propagation in shallow water in form a partial differential equation called as KdV differential equation, which its solution appropriates to the features of the solitary wave called as soliton[1]. The existence of solitons in optical fiber was predicted by Zakarov and Zabat (1972) after they derived a differential equation for the light propagating in an optical fiber, that demonstrated later by Hazagawa in 1973 at Bell Laboratory. Next, Mollenauer and Stolen employed the solitons in optical fiber for generating subpicosecond pulses.

Keywords : nonlinear Schrödinger equation, KdV, arctangent, Anti Einstein Technique

For Detail :

Visit http://rohedi.com or
Download Here

MORE .....

Another Publication from ROHEDI Laboratory


Penerapan Skema Modulasi Stabil Pada Penyelesaian Persamaan Diferensial Bernoulli. Download -- View

Teknik Menormalisasi Persamaan Relasi Dispersi Pandu Gelombang Slab Berbasis Bahan Optik Linier. Download -- View

Simplified Calculation of Guided Nonlinear Boundary-Wave Parameters Using Optimization Procedure. Download -- View

PERHITUNGAN TENAGA GERAK PARTIKEL DALAM SISTEM POTENSIAL TANJAK DENGAN PRINSIP VARIASIONAL MENGGUNAKAN FUNGSI COBAAN GAUSSIAN HERMITE. Download -- View

Generalized Linear Dispersion Relation for Symmetrical Directional-coupler of Five-layer Waveguide. Download -- View

Formulasi Analitis Tetapan Propagasi Efektif Modus TE untuk Directional Coupler Linier Diturunkan dengan Metode Matrik Karakteristik Lapis Jamak. Download -- View
There was an error in this gadget