Tuesday, September 23, 2008

Anti Einstein Technique : Analytic Solution of Nonlinear Schrödinger Equation by Means of A New Approach (Indonesia)

Persamaan Schrödinger Nonlinear (NSE) bertindak sebagai solusi optik dalam studi aplikasi komunikasi optik dan switch optik. Berbagai usaha telah dilakukan untuk mencari penyelesaian dari persamaan non linier ini seperti halnya terhadap variannya. Pada tulisan ini kita berikan suatu pendekatan yang relatif lebih sederhana mudah dan baru mengenai penyelesaian persamaananalitik dari NSE. Di rencana ini persamaan yang pertama diubah ke dalam suatu persamaan arctangent yang diferensial, yang kemudian dipisahkan ke dalam linier dan nonlinear , dengan bagian yang linier memecahkan suatu cara lurus kedepan. Solusi dari persamaan nonlinear ditulis dalam format dari fungsi modulasi ditandai oleh F(A fungsi fase dan A fungsi amplitudo nya). menggantikan solusi yang linier untuk A, persamaan arctangent yang diferensial dipecahkan untuk suatu nilai awal yang tertentu dari A. Ditunjukkan bahwa metoda ini sesuai persamaan nonlinear orde 1 seperti persamaan Korteweg de Vries equation ( Kdv), yang dapat diubah ke dalam suatu penyamaan arctangent yang diferensial.

I. Introduction (pengenalan)

Peristiwa dari perambatan gelombang yang tunggal diamati untuk pertama kali oleh Scott Russell Yohanes ilmuwan Scottish di 1844, ketika suatu hari ia sedang menyaksikan ombak air dari suatu bentuk yang tertentu yang disimpan ketika bepergian tanpa mengubah bentuknya untuk suatu jarak sejauh mata melihat. Untuk menjelaskan perilaku dari gelombang yang tidak biasa seperti itu, Korteweg de Vries membuat suatu model untuk perambatan gelombang di air yang dangkal seperti persamaan diferensial KdV, solusi nya seperti pada persamaan [1].

Keberadaan dari solitons di serabut yang berhubung dengan mata diramalkan oleh Zabat dan Zakarov ( 1972) setelah mereka memperoleh suatu persamaan diferensial untuk cahaya menyebarkan di suatu serabut optik, yang ditunjukkan kemudian oleh Hazagawa di 1973 pada Bell Laboratory. yang berikutnya, Stolen dan Mollenauer yang dipekerjakan solitons di serabut optik untuk membangkitkan denyut nadi subpicosecond.

Kata Kunci: nonlinear Schrödinger equation, KdV, arctangent, Anti Einstein Technique

MORE .....

Wednesday, September 3, 2008

Introducing Stable Modulation Technique for Solving an Inhomogeneous Bernoulli Differential Equation

The Bernoulli differential equation that has been used as primary modeling in many application branches commonly contains harmonic force function in the inhomogeneous term. The nhomogeneous Bernoulli differential equation (IBDE) is specified by nonlinearity of nth order. For instance, 3rd order IBDE is called a stochastic differential equation that has been commonly applied for describing the corrosion mechanism, the transport of fluxon, the generation of squeezed laser, etc. Due to the difficulty of applying a linearization procedure for IBDE, it has commonly been solved numerically. In this paper we introduced a so-called Stable Modulation Technique (SMT) which is able to solve a first order nonlinear differential equation that transformable into the homogeneous Bernoulli differential equation (BDE). SMT is employed by splitting BDE into linear and nonlinear parts. The solution of its nonlinear part has been found to be AF(A) where A is the initial value of nonlinear solution part and F is the modulation function whose phase is a function of A. The general solution of BDE obtained by substituting the linear solution part into initial value of the nonlinear solution part. Although IBDE can not be transformed into BDE completely, SMT gives nevertheless an approximation solution in AF(A) form, where the homogeneous solution part becomes its amplitude term. The AF(A) formula for stochastic differential equation with cosine function as inhomogeneous term can be decomposed as well into transient and steady state solutions. In addition, a special example of solving 2 ogeneous Bernoulli differential equation (BDE) has en used as a primary modeling scheme in many ation branches. A nonlinear BDE is specified by a nonlinearity of n. Although the stochastic differential equation is the first order differential equation, nevertheless the procedure of obtaining its analytical solution is very complicated as shown in utilizing of BWK (Brillouin, Wenzel, Kramer) and Reversion methods nd order BDE in creating a new Planck’s formula of black-body radiation is also presented.

Keywords–Stable modulation technique, modulation function, stochastic differential equation.

For Detail :

Visit http://rohedi.com or
Download Here

MORE .....

Monday, September 1, 2008

Analytical Solution Of The Ricatti Differential Equation For High Frequency Derived By Using The Stable Modulation Technique

The Ricatti differential equation dy/dt = P(t)y2+Q(t)y+R(t) is a nonlinear differential equation which is of contemporary interest in various fields, including particle dynamics, optics, and petroleum exploration. The Ricatti differential equation is easily solved by numerical methods. But in order to obtain the exact solution in analytical form, the first order of nonlinear inhomogeneous differential equation is commonly convert into a second order linear differential equation by use of a change of the dependent variable. In this paper we introduce the stable modulation technique (SMT) to solve the Ricatti differential equation without of the use linearization procedure. The main principle of the SMT in solving a first order nonlinear differential equation is modulate the solution of the linear part into the initial value of the nonlinear part solution. Important to be stressed here that the solution of nonlinear part must be written in the modulation function, where the initial value acts as amplitude and also including in the total phase shift. For a special case, dy/dt = -by2+ay+Acos(2πft) where a and b of both are constants, while t is variable of the time (in s), frequency f in Herzt (Hz) we find that the analytical solution of the SMT is appropriate with numerical solution espescially for high frequency f≥10 Hz, amplitude value A≤1, and initial value of the y in the range 0.1≤y0≤1. The analytical solution above can be used as trial function when the Ricatti differential equation will be solved by using combination of the modulational instability technique and variational approximation.

Keywords : Nonlinear inhomogeneous differential equation, linearization procedure, stable modulation technique, modulational instability

I. Introduction

The general form of the Ricatti differential equation (DE) is of the form :
dy/dt = P(t)y2+Q(t)y+R(t), .......................................(1)
where y and t are respectively dependent and independent variables, both of P(t) and Q(t) are homogeneous coefficients, where R(t) is the inhomogeneous term[1]. The Ricatti DE is mother of all ordinary differential equations (ODE’s) second order generating special functions like Airy, Bessel and etc,[2] even the Helmholtz equation[3] which has broad applications including optics and geophysics. Common procedure in solving the Ricatti DE is by transforming into a linear ODE second order[1],[2],[4]. For special case, the analytical exact solution of the Ricatti DE can not be obtained, because the analytical solution of the corresponding linear ODE second order is not available.

For Detail :

Visit http://rohedi.com or
Download Here

MORE .....

Sunday, August 31, 2008

How can prove that zero equal zero (0=0) or (1=1)

Who want to know and solve this equation?
if anybody can solve this problem and explain this equation, maybe you the best on matematic

1 = 1
a = a
(a**2 - a**2) = (a**2 - a**2)

..........................................
..........................................
..........................................
the result must be 1 = 1 ,but
the result is 1 = 2

you can answer on comment at the sidebar

MORE .....

Another Publication from ROHEDI Laboratory


Penerapan Skema Modulasi Stabil Pada Penyelesaian Persamaan Diferensial Bernoulli. Download -- View

Teknik Menormalisasi Persamaan Relasi Dispersi Pandu Gelombang Slab Berbasis Bahan Optik Linier. Download -- View

Simplified Calculation of Guided Nonlinear Boundary-Wave Parameters Using Optimization Procedure. Download -- View

PERHITUNGAN TENAGA GERAK PARTIKEL DALAM SISTEM POTENSIAL TANJAK DENGAN PRINSIP VARIASIONAL MENGGUNAKAN FUNGSI COBAAN GAUSSIAN HERMITE. Download -- View

Generalized Linear Dispersion Relation for Symmetrical Directional-coupler of Five-layer Waveguide. Download -- View

Formulasi Analitis Tetapan Propagasi Efektif Modus TE untuk Directional Coupler Linier Diturunkan dengan Metode Matrik Karakteristik Lapis Jamak. Download -- View